Application of Finite-Time Stability Concepts to the Control of ATM Networks

نویسندگان

  • F. Amato
  • M. Ariola
  • C. T. Abdallah
  • C. Cosentino
چکیده

When dealing with the stability of a system, a distinction should be made between classical Lyapunov Stability and Finite-Time Stability (FTS) (or ShortTime Stability). The concept of Lyapunov Asymptotic Stability is largely known to the control community; on the other hand a system is said to be finite-time stable if, once we fix a time-interval, its state does not exceeds some bounds during this time-interval. Often asymptotic stability is enough for practical applications, but there are some cases where large values of the state are not acceptable, for instance in the presence of saturations. In these cases, we need to check that these unacceptable values are not attained by the state; for these purposes FTS could be used. Some early results on FTS can be found in [9], [12] and [8]; more recently the concept of FTS has been revisited in the light of recent results coming from Linear Matrix Inequalities (LMIs) theory, which has allowed to find less conservative conditions guaranteeing FTS and finite time stabilization of uncertain, linear continuous-time systems (see [3]). In this note we consider the problem of applying some sufficient conditions for finite time stabilization to design the control algorithm of an ATM network described via a discrete-time system. The extended abstract is organized as follows: in Section 2 we provide a sufficient condition for finite time stabilization of a discrete time system; in ∗F. Amato is with the Dipartimento di Informatica, Matematica, Elettronica e Trasporti, Università degli Studi di Reggio Calabria, Reggio Calabria, Italy. †This author is responsible for correspondence. M. Ariola is with the Dipartimento di Informatica e Sistemistica, Università degli Studi di Napoli Federico II, Via Claudio 21, 80125 Napoli, Italy. E-mail: [email protected], tel.:+39-0817683862, fax: +39-0817683816. ‡C.T. Abdallah is with the Department of EECE, University of New Mexico, Albuquerque, NM 87131, USA. §C. Cosentino is with the Dipartimento di Informatica e Sistemistica, Università degli Studi di Napoli Federico II, Via Claudio 21, 80125 Napoli, Italy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

M1, M2, ..., Mk/G1, G2,..., Gk/l/N Queue with Buffer Division and Push-Out Schemes for ATM Networks (RESEARCH NOTE)

In this paper, loss probabilities and steady state probabilities of data packets for an asynchronous transfer mode (ATM) network are investigated under the buffer division and push-out schemes. Data packets are classified in classes k which arrive in Poisson fashion to the service facility and are served with general service rate under buffer division scheme, finite buffer space N is divided in...

متن کامل

FINITE-TIME PASSIVITY OF DISCRETE-TIME T-S FUZZY NEURAL NETWORKS WITH TIME-VARYING DELAYS

This paper focuses on the problem of finite-time boundedness and finite-time passivity of discrete-time T-S fuzzy neural networks with time-varying delays. A suitable Lyapunov--Krasovskii functional(LKF) is established to derive sufficient condition for finite-time passivity of discrete-time T-S fuzzy neural networks. The dynamical system is transformed into a T-S fuzzy model with uncertain par...

متن کامل

Stability analysis of impulsive fuzzy differential equations with finite delayed state

In this paper we introduce some stability criteria for impulsive fuzzy system of differential equations with finite delay in states. Firstly, a new comparison principle for fuzzy differential system compared to crisp ordinary differential equation, based on a notion of upper quasi-monotone nondecreasing, in N dimentional state space is presented. Furthermore, in order to analyze the stability o...

متن کامل

Second Order Sliding Mode Control With Finite Time Convergence

In this paper, a new smooth second order sliding mode control is proposed. This algorithm is a modified form of Super Twisting algorithm. The Super Twisting guarantees the asymptotic stability, but the finite time stability of proposed method is proved with introducing a new particular Lyapunov function. The Proposed algorithm which is able to control nonlinear systems with matched structured u...

متن کامل

Application of ANN Technique for Interconnected Power System Load Frequency Control (RESEARCH NOTE)

This paper describes an application of Artificial Neural Networks (ANN) to Load Frequency Control (LFC) of nonlinear power systems. Power systems, such as other industrial processes, have parametric uncertainties that for controller design had to take the uncertainties in to account. For this reason, in the design of LFC controller the idea of robust control theories are being used. To improve ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003